
Moment Generating Functions (MGFs)

Definition 1.1 The ith moment of a random variable, X, is

EX(X
i) = µ′

i (1)

Definition 1.2 The ith central moment of a random variable, X, is

EX

[
(X − µ)i

]
= µi (2)

Note that µ = EX(X
1) is the first moment of X, and that

σ2 = E
[
(X − EX(X))2

]
(3)

= EX

[
(X − µ)2

]
(4)

is the second central moment of X.
Further, σ2 = EX(X

2)− [EX(X)]2 is expressible as a function of noncentral moments.

Definition 1.3 Suppose that X is a random variable with a given pmf, and that, for some
real h > 0, EX(e

sX) exists for every value of s ∈ (−h, h). Then the function M defined by

M(s) = EX(e
sX) (5)

is called the moment generating function of X.

Hence,

M(s) =

{ ∑
x e

sxpX(x) discrete∫∞
−∞ esxfX(x)dx

(6)

Why do we care? Recall that

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · (7)

Hence,

esX =
∞∑
r=0

(sX)r

r!
(8)

and thus,

M(s) = EX

[ ∞∑
r=0

(sX)r

r!

]
(9)

=
∞∑
r=0

EX(X
r)
sr

r!
(10)
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We now note that the coefficient of sr

r!
is EX(X

r).
Now, we also note that, by Maclaurin series expansion,

M(s) =
∞∑
r=0

dr

dsr
M(s)

∣∣∣∣∣
s=0

sr

r!
(11)

=
∞∑
r=0

M (r)(0) · s
r

r!
(12)

Comparing the coefficients of sr

r!
we see that

EX(X
r) = M (r)(0) (13)

=
dr

dsr
M(s)

∣∣∣∣∣
s=0

(14)

Hence, given an mgf we may generate moments until we are blue in the face.

Example 1.1 Consider X ∼ Bernoulli(p).

M(s) = es(0)pX(0) + es(1)pX(1) (15)

= 1(1− p) + es(p) (16)

= pes + 1− p −∞ < s < ∞ (17)

Thus,

EX(X) =
d

ds
M(s)

∣∣∣∣∣
s=0

(18)

= pes|s=0 (19)

= p (20)

EX(X
2) =

d2

ds2
M(s)

∣∣∣∣∣
s=0

(21)

= pes|s=0 (22)

= p (23)

EX(X
3) =

d3

ds3
M(s)

∣∣∣∣∣
s=0

(24)

= pes|s=0 (25)

= p (26)

This simplifies the computation of

Var(X) = p− p2 (27)

= p(1− p) (28)
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Example 1.2 Suppose X ∼ N(0, 1). Then

M(s) =
∫ ∞

−∞
esx

1√
2π

e−x2/2dx (29)

=
1√
2π

∫ ∞

−∞
e−(x2−2sx)/2dx (30)

=
1√
2π

∫ ∞

−∞
e[−(x2−2sx+s2)/2]+s2/2dx (31)

= es
2/2 1√

2π

∫ ∞

−∞
e−(x−s)2/2dx (32)

= es
2/2 −∞ < s < ∞ (33)

1.1 Characteristics of MGFs

Theorem 1.1 Suppose a random variable, X, has the mgf MX . Let Y = aX + b, for a ∈ ℜ
and b ∈ ℜ. Then the mgf of Y is

MY (s) = MaX+b(s) (34)

= ebsMX(as) (35)

Proof:

MaX+b(s) = EX

(
e(aX+b)s

)
(36)

= EX

(
ebs · easX

)
(37)

= ebsEX

(
easX

)
(38)

= ebsMX(as) (39)

Example 1.3 Consider Y ∼ N(µ, σ2). Find the mgf of Y.
Solution: Let Z = Y−µ

σ
. Then Z ∼ N(0, 1). Now, Y = µ+ σX, and thus

MY (s) = Mµ+σX(s) (40)

= eµsMX(σs) (41)

But, since Z ∼ N(0, 1), MX(s) = es
2/2 and

MY (s) = eµse(σ
2s2/2) (42)

= eµs+(σ2s2/2) −∞ < s < ∞ (43)

Theorem 1.2 If X and Y are independent random variables with mgf’s MX(s) and MY (s)
then for a, b ∈ ℜ

MaX+bY (s) = MX(as) ·MY (bs) (44)
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Example 1.4 Recall that if X ∼ B(n, p) then X = Y1+Y2+· · ·+Yn where Yi
iid∼ Bernoulli(p).

Since MYi
(s) = pes + (1− p) for i = 1, /2, . . . , n,

MX(s) = MY1(s)MY2(s) · · ·MYn(s) (45)

= [pes + (1− p)]n (46)

This points toward a general result which is of major importance.

Theorem 1.3 Two random variables share a common mgf if and only if they share a com-
mon distribution.

I.e. moment generating functions are unique.
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